pmrf.distributions.parameter

Classes

JointParameterDistribution(param_groups, ...)

class pmrf.distributions.parameter.JointParameterDistribution(param_groups, param_names, kind='prior')[source]

Bases: Distribution

Parameters:
reparametrized_params = []
has_rsample = True
sample(key, sample_shape=())[source]

Returns a sample from the distribution having shape given by sample_shape + batch_shape + event_shape. Note that when sample_shape is non-empty, leading dimensions (of size sample_shape) of the returned sample will be filled with iid draws from the distribution instance.

Parameters:
  • key (jax.random.PRNGKey) – the rng_key key to be used for the distribution.

  • sample_shape (tuple) – the sample shape for the distribution.

Returns:

an array of shape sample_shape + batch_shape + event_shape

Return type:

numpy.ndarray

log_prob(value)[source]

Evaluates the log probability density for a batch of samples given by value.

Parameters:

value – A batch of samples from the distribution.

Returns:

an array with shape value.shape[:-self.event_shape]

Return type:

numpy.ndarray

icdf(u)[source]

The inverse cumulative distribution function of this distribution.

Parameters:

q – quantile values, should belong to [0, 1].

Returns:

the samples whose cdf values equals to q.

cdf(x)[source]

The cumulative distribution function of this distribution.

Parameters:

value – samples from this distribution.

Returns:

output of the cumulative distribution function evaluated at value.

support()[source]