pmrf.fitting.BayesianResults

class pmrf.fitting.BayesianResults(measured=None, initial_model=None, fitted_model=None, solver_results=None, settings=None, fitter=None)[source]

Bases: FitResults

Parameters:
  • measured (Network | NetworkCollection | None)

  • initial_model (Model | None)

  • fitted_model (Model | None)

  • solver_results (Any)

  • settings (FitSettings | None)

  • fitter (BaseFitter | None)

__init__(measured=None, initial_model=None, fitted_model=None, solver_results=None, settings=None, fitter=None)
Parameters:
  • measured (Network | NetworkCollection | None)

  • initial_model (Model | None)

  • fitted_model (Model | None)

  • solver_results (Any | None)

  • settings (FitSettings | None)

  • fitter (BaseFitter | None)

Return type:

None

Methods

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(other)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__gt__(value, /)

Return self>value.

__init__([measured, initial_model, ...])

__init_subclass__

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__ne__(value, /)

Return self!=value.

__new__(**kwargs)

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

decode_solver_results(group)

encode_solver_results(group)

load_hdf(path)

save_hdf(path[, metadata])

Attributes

__annotations__

__dataclass_fields__

__dataclass_params__

__dict__

__doc__

__hash__

__match_args__

__module__

__weakref__

list of weak references to the object (if defined)

fitted_model

initial_model

measured

settings

solver_results

abstract prior_samples()[source]
Return type:

Array

abstract posterior_samples()[source]
Return type:

Array

update_priors(train_dist=None, **train_kwargs)[source]
Parameters:

train_dist (TrainableDistributionT | None)