pmrf.fitting.FrequentistFitter
- class pmrf.fitting.FrequentistFitter(model, measured, *args, frequency=None, features=None, cost=None, **kwargs)[source]
Bases:
BaseFitterA base class for frequentist (classical) optimization methods.
This class extends BaseFitter by adding the concept of a cost_fn, a function that takes the difference between model features and measured features and computes a single scalar value representing the “cost” or “error”.
Initializes the FrequentistFitter.
- Args:
- model (Model):
The parametric pmrf model to be fitted.
- measured (skrf.Network | list[skrf.Network]):
The measured network data to fit the model against.
- frequency (skrf.Frequency | None, optional):
The frequency axis to perform the fit on. Defaults to None.
- features (FeatureT | FeatureListT | None, optional),
The features to extract for comparison. Defaults to None.
- cost (ArrayFuncT | list[ArrayFuncT] | eqx.Module, optional):
A function or sequence of functions defining the cost metric. If a list of functions is provided, they are composed sequentially. If None, a default cost function (typically L2 norm on the dB magnitude difference) is used. Defaults to None.
- Parameters:
model (Model)
measured (Network | dict[str, Network])
frequency (Frequency | None)
features (str | tuple[str, str] | tuple[str, str, tuple[int, int]] | Sequence[str | tuple[str, str] | tuple[str, str, tuple[int, int]]] | dict[str, str | tuple[str, str] | tuple[str, str, tuple[int, int]] | Sequence[str | tuple[str, str] | tuple[str, str, tuple[int, int]]]] | None)
cost (Callable[[Array], Array] | list[Callable[[Array], Array]] | Module)
- __init__(model, measured, *args, frequency=None, features=None, cost=None, **kwargs)[source]
Initializes the FrequentistFitter.
- Args:
- model (Model):
The parametric pmrf model to be fitted.
- measured (skrf.Network | list[skrf.Network]):
The measured network data to fit the model against.
- frequency (skrf.Frequency | None, optional):
The frequency axis to perform the fit on. Defaults to None.
- features (FeatureT | FeatureListT | None, optional),
The features to extract for comparison. Defaults to None.
- cost (ArrayFuncT | list[ArrayFuncT] | eqx.Module, optional):
A function or sequence of functions defining the cost metric. If a list of functions is provided, they are composed sequentially. If None, a default cost function (typically L2 norm on the dB magnitude difference) is used. Defaults to None.
- Parameters:
model (Model)
measured (Network | dict[str, Network])
frequency (Frequency | None)
features (str | tuple[str, str] | tuple[str, str, tuple[int, int]] | Sequence[str | tuple[str, str] | tuple[str, str, tuple[int, int]]] | dict[str, str | tuple[str, str] | tuple[str, str, tuple[int, int]] | Sequence[str | tuple[str, str] | tuple[str, str, tuple[int, int]]]] | None)
cost (Callable[[Array], Array] | list[Callable[[Array], Array]] | Module | None)
- Return type:
None
Methods
__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(value, /)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__gt__(value, /)Return self>value.
__hash__()Return hash(self).
__init__(model, measured, *args[, ...])Initializes the FrequentistFitter.
__init_subclass__This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__ne__(value, /)Return self!=value.
__new__(**kwargs)__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_bounds()_make_cost_function([as_numpy])_make_feature_function([as_numpy])_settings([solver_kwargs, fitter_kwargs])run(*args, **kwargs)Executes the fitting algorithm.
Attributes
__abstractmethods____annotations____dict____doc____module____slots____weakref__list of weak references to the object (if defined)
_abc_impl- measured: skrf.Network | NetworkCollection
- results: FitResults | None