pmrf.sampling.BaseSampler
- class pmrf.sampling.BaseSampler(model)[source]
Bases:
ABC
- Parameters:
model (Model)
Methods
__delattr__
(name, /)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattribute__
(name, /)Return getattr(self, name).
__getstate__
()Helper for pickle.
__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
__init__
(model)__init_subclass__
This method is called when a class is subclassed.
__iter__
()__le__
(value, /)Return self<=value.
__len__
()__lt__
(value, /)Return self<value.
__ne__
(value, /)Return self!=value.
__new__
(*args, **kwargs)__reduce__
()Helper for pickle.
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value, /)Implement setattr(self, name, value).
__sizeof__
()Size of object in memory, in bytes.
__str__
()Return str(self).
__subclasshook__
Abstract classes can override this to customize issubclass().
_generate_hypercube_samples
(N, D)_generate_params
(N)generate_features
(N, features, frequency[, ...])Generates N random models using the sampler's engine.
range
(N)Allows the CircuitSampler to be used as an iterable. To use, call e.g:
Attributes
__abstractmethods__
__annotations__
__dict__
__doc__
__module__
__slots__
__weakref__
list of weak references to the object
_abc_impl
- range(N)[source]
- Allows the CircuitSampler to be used as an iterable. To use, call e.g:
for i, system in enumerate(sampler.range(10)).
- Args:
n (int): The number of samples to generate
- Returns:
Model: self
- Return type:
ModelT
- generate_models(N)[source]
Generates N random models using the sampler’s engine.
Note that, if you want to generate samples one-by-one, you can use this class in iterator mode by passing N to the constructor or by using Sampler.range(..).
- Args:
n (int, optional): The number of samples to generate. Defaults to 10.
- Returns:
_type_: Model | None
- Return type:
list[ModelT]
- generate_features(N, features, frequency, dont_jit=False, **kwargs)[source]
- Parameters:
features (str | tuple[str, str] | tuple[str, str, tuple[int, int]] | Sequence[str | tuple[str, str] | tuple[str, str, tuple[int, int]]] | dict[str, str | tuple[str, str] | tuple[str, str, tuple[int, int]] | Sequence[str | tuple[str, str] | tuple[str, str, tuple[int, int]]]])
frequency (Frequency | Frequency)
- Return type:
array