pmrf.fitting.FitContext
- class pmrf.fitting.FitContext(model, measured, frequency, features, measured_features, output_path=None, output_root=None, sparam_kind=None, logger=None)[source]
Bases:
objectContext object holding the state and data required for a fit execution.
- Parameters:
- measured
The target measured data.
- Type:
skrf.Network or NetworkCollection
- features
The specific features to match against.
- Type:
list of FeatureT
- measured_features
The values of the features extracted from the measured data.
- Type:
np.ndarray
- output_path
Directory path for output files.
- Type:
str or None
- output_root
Root filename for outputs.
- Type:
str or None
- sparam_kind
The S-parameter representation kind (e.g., ‘all’, ‘transmission’).
- Type:
str or None
- logger
Logger instance for tracking progress.
- Type:
logging.Logger or None
- __init__(model, measured, frequency, features, measured_features, output_path=None, output_root=None, sparam_kind=None, logger=None)
Methods
__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(other)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__gt__(value, /)Return self>value.
__init__(model, measured, frequency, ...[, ...])__init_subclass__This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__ne__(value, /)Return self!=value.
__new__(**kwargs)__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
make_feature_function([as_numpy])Create a JIT-compiled function to extract features from model parameters.
Get the names of the flat parameters of the model.
settings([solver_kwargs, fitter_kwargs])Create a FitSettings object from the current context.
Attributes
__annotations____dataclass_fields____dataclass_params____dict____doc____hash____match_args____module____weakref__list of weak references to the object (if defined)
- measured: Network | NetworkCollection
- features: list[tuple[str, str, tuple[int, int]]]
- measured_features: ndarray
- output_path: str | None = None
- output_root: str | None = None
- sparam_kind: str | None = None
- logger: Logger | None = None
- model_param_names()[source]
Get the names of the flat parameters of the model.
- Returns:
The list of parameter names.
- Return type:
list of str
- make_feature_function(as_numpy=False)[source]
Create a JIT-compiled function to extract features from model parameters.
- Parameters:
as_numpy (bool, default=False) – If True, the returned function handles NumPy arrays; otherwise JAX arrays.
- Returns:
A function taking
thetaand returning feature values.- Return type:
callable
- settings(solver_kwargs=None, fitter_kwargs=None)[source]
Create a FitSettings object from the current context.
- Parameters:
solver_kwargs (dict, optional) – Solver specific arguments.
fitter_kwargs (dict, optional) – Fitter specific arguments.
- Returns:
The populated settings object.
- Return type:
FitSettings
- __init__(model, measured, frequency, features, measured_features, output_path=None, output_root=None, sparam_kind=None, logger=None)