pmrf.fitting.FitResults

class pmrf.fitting.FitResults(measured=None, initial_model=None, fitted_model=None, solver_results=None, settings=None)[source]

Bases: object

Container for the results of a model fitting process.

Parameters:
  • measured (Network | NetworkCollection | None)

  • initial_model (Model | None)

  • fitted_model (Model | None)

  • solver_results (Model)

  • settings (FitSettings | None)

measured

The original measured data (target).

Type:

skrf.Network, NetworkCollection, or None

initial_model

The model with the initial parameters.

Type:

Model or None

fitted_model

The model with the fitted parameters.

Type:

Model or None

solver_results

The raw result object returned by the optimization backend.

Type:

Any

settings

The configuration used to execute the fit.

Type:

FitSettings or None

__init__(measured=None, initial_model=None, fitted_model=None, solver_results=None, settings=None)
Parameters:
  • measured (Network | NetworkCollection | None)

  • initial_model (Model | None)

  • fitted_model (Model | None)

  • solver_results (Model | None)

  • settings (FitSettings | None)

Return type:

None

Methods

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(other)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__gt__(value, /)

Return self>value.

__init__([measured, initial_model, ...])

__init_subclass__

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__ne__(value, /)

Return self!=value.

__new__(**kwargs)

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_decode_recursive(group)

_encode_recursive(obj, group)

_group_to_dict(group)

_read_from_group(group)

Internal driver to load full object state.

_read_network(group)

_read_settings(group)

_save_dict_to_group(d, group)

_write_network(group, ntwk)

_write_settings(group)

_write_to_group(group[, metadata])

Internal driver to save full object state.

decode_solver_results(group)

Decode solver results from an HDF5 group.

encode_solver_results(group)

Encode solver results into an HDF5 group.

load_hdf(path)

Load fit results from an HDF5 file.

plot_s_db([use_initial_model])

Plots the S-parameters (Magnitude in dB) of the Measured vs Fitted data.

save_hdf(path[, metadata])

Save the fit results to an HDF5 file.

Attributes

__annotations__

__dataclass_fields__

__dataclass_params__

__dict__

__doc__

__hash__

__match_args__

__module__

__weakref__

list of weak references to the object (if defined)

fitted_model

initial_model

measured

settings

solver_results

measured: Network | NetworkCollection | None = None
initial_model: Model | None = None
fitted_model: Model | None = None
solver_results: Model = None
settings: FitSettings | None = None
plot_s_db(use_initial_model=False)[source]

Plots the S-parameters (Magnitude in dB) of the Measured vs Fitted data.

save_hdf(path, metadata=None)[source]

Save the fit results to an HDF5 file.

Parameters:
  • path (str)

  • metadata (dict | None)

classmethod load_hdf(path)[source]

Load fit results from an HDF5 file.

Parameters:

path (str)

Return type:

FitResults

encode_solver_results(group)[source]

Encode solver results into an HDF5 group.

Base implementation uses recursion to handle FitResults, dicts, and lists. Subclasses can override this for specific formats (e.g. Scipy results).

Parameters:

group (Group)

classmethod decode_solver_results(group)[source]

Decode solver results from an HDF5 group.

Parameters:

group (Group)

Return type:

Any

__init__(measured=None, initial_model=None, fitted_model=None, solver_results=None, settings=None)
Parameters:
  • measured (Network | NetworkCollection | None)

  • initial_model (Model | None)

  • fitted_model (Model | None)

  • solver_results (Model | None)

  • settings (FitSettings | None)

Return type:

None