pmrf.sampling.BaseSampler

class pmrf.sampling.BaseSampler(model)[source]

Bases: ABC

Parameters:

model (ModelT)

__init__(model)[source]
Parameters:

model (ModelT)

Methods

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

Helper for pickle.

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init__(model)

__init_subclass__

This method is called when a class is subclassed.

__iter__()

__le__(value, /)

Return self<=value.

__len__()

__lt__(value, /)

Return self<value.

__ne__(value, /)

Return self!=value.

__new__(*args, **kwargs)

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_generate_hypercube_samples(N, D)

_generate_params(N)

generate_features(N, features, frequency[, ...])

generate_models(N)

Generates N random models using the sampler's engine.

range(N)

Allows the CircuitSampler to be used as an iterable. To use, call e.g:

Attributes

__abstractmethods__

__annotations__

__dict__

__doc__

__module__

__slots__

__weakref__

list of weak references to the object

_abc_impl

range(N)[source]
Allows the CircuitSampler to be used as an iterable. To use, call e.g:

for i, system in enumerate(sampler.range(10)).

Args:

n (int): The number of samples to generate

Returns:

Model: self

Return type:

ModelT

generate_models(N)[source]

Generates N random models using the sampler’s engine.

Note that, if you want to generate samples one-by-one, you can use this class in iterator mode by passing N to the constructor or by using Sampler.range(..).

Args:

n (int, optional): The number of samples to generate. Defaults to 10.

Returns:

_type_: Model | None

Return type:

list[ModelT]

generate_features(N, features, frequency, dont_jit=False, **kwargs)[source]
Parameters:
  • features (str | tuple[str, str] | tuple[str, str, tuple[int, int]] | Sequence[str | tuple[str, str] | tuple[str, str, tuple[int, int]]] | dict[str, str | tuple[str, str] | tuple[str, str, tuple[int, int]] | Sequence[str | tuple[str, str] | tuple[str, str, tuple[int, int]]]])

  • frequency (Frequency | Frequency)

Return type:

array