pmrf.sampling.samplers.LatinHypercubeSampler
- class pmrf.sampling.samplers.LatinHypercubeSampler(model)[source]
Bases:
BaseSampler- Parameters:
model (Model)
- __init__(model)
- Parameters:
model (ModelT)
Methods
__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(value, /)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__gt__(value, /)Return self>value.
__hash__()Return hash(self).
__init__(model)__init_subclass__This method is called when a class is subclassed.
__iter__()__le__(value, /)Return self<=value.
__len__()__lt__(value, /)Return self<value.
__ne__(value, /)Return self!=value.
__new__(**kwargs)__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_generate_hypercube_samples(N, D)_generate_params(N)generate_features(N, features, frequency[, ...])generate_models(N)Generates N random models using the sampler's engine.
range(N)Allows the CircuitSampler to be used as an iterable. To use, call e.g:
Attributes
__abstractmethods____annotations____dict____doc____module____slots____weakref__list of weak references to the object (if defined)
_abc_impl